Downlink Precoding with Mixed Statistical and Imperfect Instantaneous CSI for Massive MIMO Systems

نویسندگان

  • Shuang Qiu
  • Da Chen
  • Daiming Qu
  • Kai Luo
  • Tao Jiang
چکیده

In this paper, the feasibility of a new downlink transmission mode in massive multi-input multi-output (MIMO) systems is investigated with two types of users, i.e., the users with only statistical channel state information (CSI) and the users with imperfect instantaneous CSI. The problem of downlink precoding design with mixed utilization of statistical and imperfect instantaneous CSI is addressed. We first theoretically analyze the impact of the mutual interference between the two types of users on their achievable rate. Then, considering the mutual interference suppression, we propose an extended zero-forcing (eZF) and an extended maximum ratio transmission (eMRT) precoding methods to minimize the total transmit power of base station and to maximize the received signal power of users, respectively. Thanks to the exploitation of statistical CSI, pilot-based channel estimation is avoided enabling more active users, higher system sum rate and shorter transmission delay. Finally, simulations are performed to validate the accuracy of the theoretical analysis and the advantages of the proposed precoding methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Max-Min Fair Transmit Precoding for Multi-Group Multicasting in Massive MIMO

This paper considers the downlink precoding for physical layer multicasting in massive multipleinput-multiple-output (MIMO) systems. We study the max-min fairness (MMF) problem, where channel state information (CSI) at the transmitter is used to design precoding vectors that maximize the minimum spectral efficiency (SE) of the system, given fixed power budgets for uplink training and downlink t...

متن کامل

Mimo Based Downlink Channels with Limited Feedback and User Selection Using Th Precoding Technique

The implementation of Tomlinson-Harashima (TH) pre-coding for multiuser MIMO systems based on quantized channel state information (CSI) at the transmitter side. Compared with the results in [1], our scheme applies to more general system setting where the number of users in the system can be less than or equal to the number of transmit antennas. We also study the achievable average sum rate of t...

متن کامل

Performance Analysis of Massive MIMO Downlink System with Imperfect Channel State Information

We investigate the ergodic sum rate and required transmit power of a single-cell massive multiple-input multiple-output (MIMO) downlink system. The system considered in this paper is based on two linear beamforming schemes, that is, maximum ratio transmission (MRT) beamforming and zero-forcing (ZF) beamforming. What’s more, we use minimum mean square error (MMSE) channel estimation to get imper...

متن کامل

Channel Estimation for TDD/FDD Massive MIMO Systems with Channel Covariance Computing

In this paper, we propose a new channel estimation scheme for TDD/FDD massive MIMO systems by reconstructing uplink/downlink channel covariance matrices (CCMs) with the aid of array signal processing techniques. Specifically, the angle information and power angular spectrum (PAS) of each multi-path channel is extracted from the instantaneous uplink channel state information (CSI). Then, the upl...

متن کامل

Robust Transmission for Massive MIMO Downlink with Imperfect CSI

In this paper, the design of robust linear precoders for the massive multi-input multi-output (MIMO) downlink with imperfect channel state information (CSI) is investigated, where each user equipment (UE) is equipped with multiple antennas. The imperfect CSI for each UE obtained at the BS is modeled as statistical CSI under a jointly correlated channel model with both channel mean and channel v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.10797  شماره 

صفحات  -

تاریخ انتشار 2017